Published in

EMBO Press, The EMBO Journal, 7(14), p. 1329-1339, 1995

DOI: 10.1002/j.1460-2075.1995.tb07119.x

Links

Tools

Export citation

Search in Google Scholar

The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Emp24p is a type I transmembrane protein that is involved in secretory protein transport from the endoplasmic reticulum (ER) to the Golgi complex. A yeast mutant that lacks Emp24p (emp24 delta) is viable, but periplasmic invertase and the glycosylphosphatidyl-inositol-anchored plasma membrane protein Gas1p are delivered to the Golgi apparatus with reduced kinetics, whereas transport of alpha-factor, acid phosphatase and two vacuolar proteins is unaffected. Oligomerization and protease digestion studies of invertase suggest that the selective transport phenotype observed in the emp24 delta mutant is not due to a defect in protein folding or oligomerization. Consistent with a role in ER to Golgi transport, Emp24p is a component of COPII-coated, ER-derived transport vesicles that are isolated from a reconstituted in vitro budding reaction. We propose that Emp24p is involved in the sorting and/or concentration of a subset of secretory proteins into ER-derived transport vesicles.