Published in

BioMed Central, Virology Journal, 1(8), 2011

DOI: 10.1186/1743-422x-8-146

Links

Tools

Export citation

Search in Google Scholar

Analysis of codon usage and nucleotide composition bias in polioviruses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and a member of the family of Picornaviridae and among the most rapidly evolving viruses known. Analysis of codon usage can reveal much about the molecular evolution of the viruses. However, little information about synonymous codon usage pattern of polioviruses genome has been acquired to date. Methods The relative synonymous codon usage (RSCU) values, effective number of codon (ENC) values, nucleotide contents and dinucleotides were investigated and a comparative analysis of codon usage pattern for open reading frames (ORFs) among 48 polioviruses isolates including 31 of genotype 1, 13 of genotype 2 and 4 of genotype 3. Results The result shows that the overall extent of codon usage bias in poliovirus samples is low (mean ENC = 53.754 > 40). The general correlation between base composition and codon usage bias suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in those polioviruses. Depending on the RSCU data, it was found that there was a significant variation in bias of codon usage among three genotypes. Geographic factor also has some effect on the codon usage pattern (exists in the genotype-1 of polioviruses). No significant effect in gene length or vaccine derived polioviruses (DVPVs), wild viruses and live attenuated virus was observed on the variations of synonymous codon usage in the virus genes. The relative abundance of dinucleotide (CpG) in the ORFs of polioviruses are far below expected values especially in DVPVs and attenuated virus of polioviruses genotype 1. Conclusion The information from this study may not only have theoretical value in understanding poliovirus evolution, especially for DVPVs genotype 1, but also have potential value for the development of poliovirus vaccines.