Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Biological Chemistry, 26(275), p. 19676-19684, 2000

DOI: 10.1074/jbc.m002866200

Links

Tools

Export citation

Search in Google Scholar

Suppression of erythroid but not megakaryocytic differentiation of human K562 Erythroleukemic cells by Notch-1

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Notch signal transduction pathway is a highly conserved regulatory system that controls multiple developmental processes. We have established an erythroleukemia cell model to study how Notch regulates cell fate and erythroleukemic cell differentiation. K562 and HEL cells expressed the Notch-1 receptor and the Notch ligand Jagged-1. The stable expression of the constitutively active intracellular domain of Notch-1 (NIC-1) in K562 cells inhibited erythroid without affecting megakaryocytic maturation. Expression of antisense Notch-1 induced spontaneous erythroid maturation. Suppression of erythroid maturation by NIC-1 did not result from down-regulation of GATA-1 and TAL-1, transcription factors necessary for erythroid differentiation. Microarray gene expression analysis identified genes activated during erythroid maturation, and NIC-1 disrupted the maturation-dependent changes in the expression of these genes. These results show that NIC-1 alters the pattern of gene expression in K562 cells leading to a block in erythroid maturation and therefore suggest that Notch signaling may control the developmental potential of normal and malignant erythroid progenitor cells.