Published in

Taylor & Francis, Expert Review of Neurotherapeutics, 7(8), p. 1101-1113

DOI: 10.1586/14737175.8.7.1101

Links

Tools

Export citation

Search in Google Scholar

Brain-derived neurotrophic factor and neuroplasticity in bipolar disorder

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Initial descriptions of bipolar disorder (BD) emphasized that patients returned to a baseline condition after acute episodes. Such definitions were operational in teasing bipolar disorder apart from schizophrenia, where patients were described to be permanently impaired after the initial episodes. However, this view of BD as a disorder where cognition and overall functioning was spared has been changing after the scrutiny of new research. Currently, the cognitive impairment and neuroanatomical changes related to cumulative mood episodes, particularly manic episodes, are well described. In terms of neuropathological findings, recent data suggest that changes in neuronal plasticity, particularly in cell resilience and connectivity, are the main findings in BD. Data from differential lines of research converge to BDNF as an important contributor to the pathophysiology of BD. Serum BDNF levels have been shown to be decreased in depressive and manic episodes, returning to normal levels in euthymia. Moreover, factors that negatively influence the course of BD, such as life stress and trauma, have been shown to be associated with a decrease in serum BDNF levels among bipolar patients. These findings suggest that BDNF plays a central role in the transduction of psychosocial stress and recurrent episodes into the neurobiology of bipolar disorder. The present review discusses the role of BDNF as a mediator of the neuroplastic changes that occur in portion with mood episodes and the potential use of serum BDNF as a biomarker in BD.