Published in

Wiley, Journal of Zoology, 2(295), p. 143-153, 2014

DOI: 10.1111/jzo.12190

Links

Tools

Export citation

Search in Google Scholar

Brain size variation in extremophile fish: Local adaptation versus phenotypic plasticity

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The brain is a plastic organ, and so intraspecific studies that compare results obtained from wild individuals with those from common-garden experiments are crucial for studies aiming to understand brain evolution. We compared volumes of brain regions between reproductively isolated populations of a neotropical fish, Poecilia mexicana, that has locally adapted to perpetual darkness (Cueva Luna Azufre), toxic hydrogen sulphide in a surface stream (El Azufre) or a combination of both stressors (Cueva del Azufre). Wild fish showed habitat-dependent differences: enlarged telencephalic lobes and reduced optic tecta were found in fish living in darkness and sulphidic waters, in darkness without hydrogen sulphide or exposed to light and sulphide; fish from the sulphidic cave additionally showed enlarged cerebella. Comparison with common-garden reared fish detected a general decrease in brain size throughout populations in the lab, and little of the brain size divergence between lab-reared ecotypes that was seen in wild-caught fish. The pronounced differences in brain region volumes between ecotypes in the wild might be interpreted within the framework of mosaic evolution; however, the outcomes of common-garden experiments indicate a high amount of phenotypic plasticity. Our study thus highlights the importance of combining the investigation of brain size in wild populations with common-garden experiments for answering questions of brain evolution.