Published in

Elsevier, Carbon, 7(47), p. 1867-1870

DOI: 10.1016/j.carbon.2009.03.005

Links

Tools

Export citation

Search in Google Scholar

Using oxidation to increase the electrical conductivity of carbon nanotube electrodes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent studies have demonstrated that significantly low sheet resistance (Rs) (<100 Ω/sq; comparable to ITO) were achieved in single-walled carbon nanotube (SWCNT) films treated with HNO3 followed by thionyl chloride. Here we show that H2SO4 can effectively reduce the Rs of SWCNT electrodes. H2SO4 treatment generates defects (COOH and SO3H functionalities) on SWCNTs and the produced chemical functionalities are beneficial for enhancing the electrical conductivity in SWCNT electrodes. It is plausible that the H2SO4p-dopes the SWCNTs and the attachment of chemical functionalities helps to stabilize p-doping owing to their electron-deficient property.