Dissemin is shutting down on January 1st, 2025

Published in

Quantum Sensing and Nanophotonic Devices V

DOI: 10.1117/12.783927

Links

Tools

Export citation

Search in Google Scholar

Mid-infrared vertical-cavity surface-emitting lasers based on lead salt/BaF 2 Bragg mirrors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We demonstrate mid-infrared continuous-wave vertical-cavity surface-emitting lasers based on Bragg mirrors using IV-VI semiconductors and BaF2. This material combination exhibits a high ratio between the refractive indices of up to 3.5, leading to a broad mirror stop band with a relative width of 75 %. Thus, mirror reflectivities higher than 99.7 % are gained for only three layer pairs. Optical excitation of microcavity laser structures with a PbSe active region results in stimulated emission at various cavity modes between 7.3 mum and 5.9 mum at temperatures between 54 K and 135 K. Laser emission is evidenced by a strong line width narrowing with respect to the line width of the cavity mode and a clear laser threshold at a pump power of 130 mW at 95 K. Furthermore, we study a similar microcavity but without an active region. The resonance of such an empty microcavity has a narrow line width of 5.2 nm corresponding to a very high finesse of 750, in good agreement to transfer matrix simulations and to the expected mirror reflectivities.