Published in

Bentham Science Publishers, Current Medicinal Chemistry, 20(10), p. 2147-2174

DOI: 10.2174/0929867033456792

Bentham Science Publishers, Frontiers in Medicinal Chemistry, 1(2), p. 63-109

DOI: 10.2174/1567204052930899

Links

Tools

Export citation

Search in Google Scholar

Brain Nitric Oxide and Its Dual Role in Neurodegeneration / Neuroprotection: Understanding Molecular Mechanisms to Devise Drug Approaches

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nitric oxide (NO) has been established as an important messenger molecule in various steps of brain physiology, from development to synaptic plasticity, learning and memory. However, NO has also been viewed as a major agent of neuropathology when, escaping controlled production it may directly or indirectly promote oxidative and nitrosative stress. The exact borderline between physiological, and therefore neuroprotective, and pathological, and therefore neurodegenerative, actions of NO is a matter of controversy among researchers in the field. This is reflected in the present status of drug research, that is focused on finding ways to block NO production, and therefore limit neuropathology, as well as on finding ways to increase NO availability and therefore elicit neuroprotection. As an unavoidable consequence, both classes of drugs are reported to have neurodegenerative or neuroprotective effects, depending on the models in which they are tested. Aim of the present paper is to provide the reader with a survey, as much complete as possible, on the main aspects of NO biology, from biochemistry and chemical reactivity to the molecular signals elicited in neural cells target of its neurodegenerative or neuroprotective action. In doing that, many controversial aspects related to basic biology and to neuropathology of NO are taken into account. In the final sections, main classes of drugs able to interfere with NO physiopathology are examined, in order to try to devise possible directions for future NO-based therapeutical strategies.