Published in

Wiley, Traffic, 12(10), p. 1802-1818, 2009

DOI: 10.1111/j.1600-0854.2009.00995.x

Links

Tools

Export citation

Search in Google Scholar

A Conserved, Lipid-Mediated Sorting Mechanism of Yeast Ist2 and Mammalian STIM Proteins to the Peripheral ER

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sorting of yeast Ist2 to the plasma membrane (PM) or the cortical endoplasmic reticulum (ER) requires a cortical sorting signal (CSS(Ist2)) that interacts with lipids including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) at the PM. Here, we show that the expression of Ist2 in mammalian cells resulted in a peripheral patch-like localization without any detection of Ist2 at the cell surface. Attached to C-termini of mammalian integral membrane proteins, the CSS(Ist2) targeted these proteins to PM-associated domains of the ER and abolished trafficking via the classical secretory pathway. The interaction of integral membrane proteins with PI(4,5)P(2) at the PM created ER-PM contacts. This process is similar to the regulated coupling of ER domains to the PM via stromal interaction molecule (STIM) proteins during store-operated Ca(2+) entry (SOCE). The CSS(Ist2) and the C-terminus of the ER-located Ca(2+) sensor STIM2 were sufficient to bind PI(4,5)P(2) and PI(3,4,5)P(3) at the PM, showing that an evolutionarily conserved mechanism is involved in the sorting of integral membrane proteins to PM-associated domains of the ER. Yeast Ist2 and STIM2 share a common basic and amphipathic signal at their extreme C-termini. STIM1 showed binding preference for liposomes containing PI(4,5)P(2), suggesting a specific contribution of lipids to the recruitment of ER domains to the PM during SOCE.