Published in

Elsevier, Cell, 6(123), p. 1107-1120, 2005

DOI: 10.1016/j.cell.2005.09.033

Links

Tools

Export citation

Search in Google Scholar

Mechanism of Lysine 48-Linked Ubiquitin-Chain Synthesis by the Cullin-RING Ubiquitin-Ligase Complex SCF-Cdc34

Journal article published in 2005 by Matthew D. Petroski, Raymond J. Deshaies ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ubiquitin chains linked via lysine 48 (K48) of ubiquitin mediate recognition of ubiquitinated proteins by the proteasome. However, the mechanisms underlying polymerization of this targeting signal on a substrate are unknown. Here we dissect this process using the cyclin-dependent kinase inhibitor Sic1 and its ubiquitination by the cullin-RING ubiquitin ligase SCF(Cdc4) and the ubiquitin-conjugating enzyme Cdc34. We show that Sic1 ubiquitination can be separated into two steps: attachment of the first ubiquitin, which is rate limiting, followed by rapid elongation of a K48-linked ubiquitin chain. Mutation of an acidic loop conserved among Cdc34 orthologs has no effect on attachment of the first ubiquitin onto Sic1 but compromises the processivity and linkage specificity of ubiquitin-chain synthesis. We propose that the acidic loop favorably positions K48 of a substrate-linked ubiquitin to attack SCF bound Cdc34 approximately ubiquitin thioester and thereby enables processive synthesis of K48-linked ubiquitin chains by SCF-Cdc34.