Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 52(106), p. 22223-22228, 2009

DOI: 10.1073/pnas.0912250106

Links

Tools

Export citation

Search in Google Scholar

A conserved MutS homolog connector domain interface interacts with MutL homologs

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Escherichia coli MutS forms a mispair-dependent ternary complex with MutL that is essential for initiating mismatch repair (MMR) but is structurally uncharacterized, in part owing to its dynamic nature. Here, we used hydrogen/deuterium exchange mass spectrometry and other methods to identify a region in the connector domain (domain II) of MutS that binds MutL and is required for mispair-dependent ternary complex formation and MMR. A structurally conserved region in Msh2, the eukaryotic homolog, was required for formation of a mispair-dependent Msh2–Msh6–Mlh1–Pms1 ternary complex. These data indicate that the connector domain of MutS and Msh2 contains the interface for binding MutL and Mlh1–Pms1, respectively, and support a mechanism whereby mispair and ATP binding induces a conformational change that allows the MutS and Msh2 interfaces to interact with their partners.