Published in

Nature Research, Scientific Reports, 1(4), 2014

DOI: 10.1038/srep04394

Links

Tools

Export citation

Search in Google Scholar

Microyielding of Core-Shell Crystal Dendrites in a Bulk-metallic-glass Matrix Composite

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulk metallic-glass matrix composite. The complementary diffraction measurements and the simulation results suggest that the interface, as Maxwell damper, between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.