Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of the American Chemical Society, 43(127), p. 15151-15160, 2005

DOI: 10.1021/ja0539138

Links

Tools

Export citation

Search in Google Scholar

Evidence of a Borderline Region between E1cb and E2 Elimination Reaction Mechanisms: A Combined Experimental and Theoretical Study of Systems Activated by the Pyridine Ring

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report a combined experimental and theoretical study to characterize the mechanism of base-induced beta-elimination reactions in systems activated by the pyridyl ring, with halogen leaving groups. The systems investigated represent borderline cases, where it is uncertain whether the reaction proceeds via a carbanion intermediate (E1cb, A(xh)D(H) + D(N)) or via the concerted loss of a proton and the halide (E2, A(N)D(E)D(N)) upon base attack. Experimentally, the Taft correlation for H/D exchange, in OD(-)/D(2)O with noneliminating substrates (1-methyl-2-(2-Xethyl)pyridinium iodide), is used to predict the expected values of the rate constants for the elimination reactions with N-methylated substrates and F, Cl, Br as the leaving group. The comparison indicates an E1cb irreversible mechanism with F, but the deviation observed with Cl and Br does not allow a conclusive assignment. The theoretical calculations show that for the N-methylated substrate with a fluoride leaving group the elimination proceeds via formation of a moderately stable carbanion. No stable anionic intermediate is instead found when the leaving group is Cl or Br, as well as for any of the nonmethylated species, indicating a concerted elimination. The methylated substrate with Cl shows however only a moderate increase in reactivity compared to the fluorinated substrate, despite the change in mechanism. Very interestingly, our analysis of the computed two-dimensional potential energy surface for the reaction with a F leaving group indeed evidences the lack of a net distinction between the E1cb and E2 reaction paths, which appear to merge smoothly into each other in these borderline cases.