Published in

Cold Spring Harbor Laboratory Press, Genes & Development, 13(14), p. 1642-1650, 2000

DOI: 10.1101/gad.14.13.1642

Links

Tools

Export citation

Search in Google Scholar

polι, a remarkably error-prone human DNA polymerase

Journal article published in 2000 by Agnès Tissier ORCID, John P. McDonald, Ekaterina G. Frank, Roger Woodgate ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

TheSaccharomyces cerevisiae RAD30gene encodes DNA polymerase η. Humans possess two Rad30 homologs. One (RAD30A/POLH) has previously been characterized and shown to be defective in humans with the Xeroderma pigmentosum variant phenotype. Here, we report experiments demonstrating that the second human homolog (RAD30B), also encodes a novel DNA polymerase that we designate polι. polι, is a distributive enzyme that is highly error-prone when replicating undamaged DNA. At template G or C, the average error frequency was ∼1 × 10−2. Our studies revealed, however, a striking asymmetry in misincorporation frequency at template A and T. For example, template A was replicated with the greatest accuracy, with misincorporation of G, A, or C occurring with a frequency of ∼1 × 10−4to 2 × 10−4. In dramatic contrast, most errors occurred at template T, where the misincorporation of G was, in fact, favored ∼3:1 over the correct nucleotide, A, and misincorporation of T occurred at a frequency of ∼6.7 × 10−1. These findings demonstrate that polι is one of the most error-prone eukaryotic polymerases reported to date and exhibits an unusual misincorporation spectrum in vitro.