Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, BMC Evolutionary Biology, 1(13), 2013

DOI: 10.1186/1471-2148-13-150

Links

Tools

Export citation

Search in Google Scholar

Exploring signatures of positive selection in pigmentation candidate genes in populations of East Asian ancestry

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Currently, there is very limited knowledge about the genes involved in normal pigmentation variation in East Asian populations. We carried out a genome-wide scan of signatures of positive selection using the 1000 Genomes Phase I dataset, in order to identify pigmentation genes showing putative signatures of selective sweeps in East Asia. We applied a broad range of methods to detect signatures of selection including: 1) Tests designed to identify deviations of the Site Frequency Spectrum (SFS) from neutral expectations (Tajima’s D, Fay and Wu’s H and Fu and Li’s D* and F*), 2) Tests focused on the identification of high-frequency haplotypes with extended linkage disequilibrium (iHS and Rsb) and 3) Tests based on genetic differentiation between populations (LSBL). Based on the results obtained from a genome wide analysis of 25 kb windows, we constructed an empirical distribution for each statistic across all windows, and identified pigmentation genes that are outliers in the distribution. Results Our tests identified twenty genes that are relevant for pigmentation biology. Of these, eight genes (ATRN, EDAR, KLHL7, MITF, OCA2, TH, TMEM33 and TRPM1,) were extreme outliers (top 0.1% of the empirical distribution) for at least one statistic, and twelve genes (ADAM17, BNC2, CTSD, DCT, EGFR, LYST, MC1R, MLPH, OPRM1, PDIA6, PMEL (SILV) and TYRP1) were in the top 1% of the empirical distribution for at least one statistic. Additionally, eight of these genes (BNC2, EGFR, LYST, MC1R, OCA2, OPRM1, PMEL (SILV) and TYRP1) have been associated with pigmentary traits in association studies. Conclusions We identified a number of putative pigmentation genes showing extremely unusual patterns of genetic variation in East Asia. Most of these genes are outliers for different tests and/or different populations, and have already been described in previous scans for positive selection, providing strong support to the hypothesis that recent selective sweeps left a signature in these regions. However, it will be necessary to carry out association and functional studies to demonstrate the implication of these genes in normal pigmentation variation.