Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Nuclear Science, 5(51), p. 2032-2036, 2004

DOI: 10.1109/tns.2004.836138

Links

Tools

Export citation

Search in Google Scholar

The particle tracking silicon microscope PTSM

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel position- and energy-sensitive particle detector for radiobiological application is described. The aim is to support research in radiation response of biological systems, for example in the induction of mutations in C elegans, where precise knowledge of location and intensity of the radiation is crucial to understand radiation sensitivity of individual cells. The "Particle Silicon Tracking Microscope" (PTSM) consists of a silicon strip detector in direct contact with radiobiological samples (e.g., C elegans), such that the location and intensity of particle radiation can be controlled at the 10 μm scale. The readout is performed with low-noise readout electronics, which allows the determination of the particle's position from the hit strip address and its energy from the specific energy loss. In our implementation, the energy loss is measured through the time-over-threshold (TOT). The noise rate at acceptable thresholds is so low that the single particles can be detected with 100% efficiency. The performance of the front-end ASIC is described, and the results of initial environmental tests are reported. These include placing biological samples and saline solutions in direct contact with the silicon detectors.