Published in

Springer Nature [academic journals on nature.com], NPG Asia Materials, 6(7), p. e184

DOI: 10.1038/am.2015.43

Links

Tools

Export citation

Search in Google Scholar

Nanosheet transfection: Effective transfer of naked DNA on silica glass

Journal article published in 2015 by Nien-Chi Huang, Qingmin Ji, Katsuhiko Ariga, Shan-Hui Hsu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Existing gene delivery technologies using nonviral vectors or physical stimulation are limited by cytotoxicity. Here, we reveal an easy and new method to fabricate silica upright nanosheets, which can be easily scaled up and used for gene delivery. We demonstrate that naked DNA can be transferred into difficult-to-transfect cells (for example, stem cells) by plating cells on silica glass with the upright nanosheets without using any vector. Gene entry is probably achieved through the integrin-FAK-Rho signaling axis, which can be activated by the cytoskeleton rearrangement on nanosheets in a limited time frame (‘transfection window’). Transfecting naked GATA4-binding protein 4 plasmids into stem cells can upregulate the other two important cardiac marker genes myocyte enhancer factor 2C and T-box 5. The transfected mesenchymal stem cells express the cardiac marker proteins at 7 days after transfection, which confirms the success of the innovative gene delivery approach. The vector-free silica nanosheet-induced transfection is simple and effective but faster and safer than the conventional technologies.