Published in

Elsevier, Atmospheric Environment, 13(44), p. 1587-1596

DOI: 10.1016/j.atmosenv.2010.02.005

Links

Tools

Export citation

Search in Google Scholar

Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition

Journal article published in 2010 by Jorge Pey, Xavier Querol ORCID, Andrés Alastuey
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Simultaneous measurements of the PM concentration levels and chemical composition of atmospheric aerosols at a regional background (RB) and an urban background (UB) site, located in the same geographic region, allowed for the determination of their urban and regional contributions. In the specific case of the North-Western region of the Mediterranean the RB amount has been quantified in 18, 13 and 12 μg m−3 for PM10, PM2.5 and PM1, respectively, whereas the UB contribution reached 22, 13 and 8 μg m−3, respectively. The UB contributions in the Western Mediterranean are much higher than those observed in other European regions; especially concerning the coarse fraction. The high loads of road dust in the urban areas across the Mediterranean may account for these large differences.The urban contributions are extremely enriched in Ca, Fe, Sb, Sn, Cu, Zn, being the main tracers of the road dust, with concentrations up to 6–8 times higher than those at the RB. Elemental carbon and nitrate are mainly derived from direct vehicular emissions. Some industrial tracers (Mn, Pb, Bi) are also enriched in the urban area. The evaluation of the Cu/Sb, Cu/Zn, Cu/Cd and Cu/Pb ratios and the high enrichment of these trace elements versus the Upper Crustal Composition average values corroborates the importance of the road-traffic emissions in the study area, also influencing the RB.The supplementary results from a suburban site in the Balearic Islands and the evaluation of the V/Ni ratios evidence the strong signature of fuel-oil combustion processes, which is a general characteristic of the Mediterranean aerosols.