Published in

American Chemical Society, Chemistry of Materials, 21(27), p. 7531-7537, 2015

DOI: 10.1021/acs.chemmater.5b03892

Links

Tools

Export citation

Search in Google Scholar

Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We studied the structural and compositional transformations of colloidal covellite (CuS) nanocrystals (and of djurleite (Cu1.94S) nanocrystals as a control) when exposed to divalent cations, as Cd2+ and Hg2+, at room temperature in organic solvents. All the experiments were run in the absence of phosphines, which are a necessary ingredient for cation exchange reactions involving copper chalcogenides, as they strongly bind to the expelled Cu+ ions. Under these experimental conditions, no remarkable reactivity was indeed seen for both CuS and Cu1.94S nanocrystals. On the other hand, in the covellite structure 2/3 of sulfur atoms form covalent S?S bonds. This peculiarity suggests that the combined presence of electron donors and of foreign metal cations can trigger the entry of both electrons and cations in the covellite lattice, causing reorganization of the anion framework due to the rupture of the S?S bonds. In Cu1.94S, which lacks S?S bonds, this mechanism should not be accessible. This hypothesis was