Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (738), 2002

DOI: 10.1557/proc-738-g1.1

Links

Tools

Export citation

Search in Google Scholar

Nanoscale Structure/Property Correlation Through Aberration-Corrected Stem And Theory

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The combination of atomic-resolution Z-contrast microscopy, electron energy loss spectroscopy and first-principles theory has proved to be a powerful means for structure property correlations at interfaces and nanostructures. The scanning transmission electron microscope (STEM) now routinely provides atomic-sized electron beams, allowing simultaneous Z-contrast imaging and EELS as shown in Fig. 1. The feasiblity of correcting the inherently large spherical aberration of microscope objective lenses promises to at least double the achievable resolution. The potential benefits for the STEM, however, may turn out to be much greater than those for the conventional TEM because it is very much less sensitive to chromatic instabilities. The 100 kV VG Microscopes HB501UX at Oak Ridge National Laboratory (ORNL) is now fitted with an aberration corrector constructed by Nion Co., which improved its resolution from 2.2 Å (full-width-half-maximum probe intensity) to around 1.3 Å. It is now very comparable in performance to the uncorrected 300 kV HB603U STEM at ORNL which, before correction, also had a directly interpretable resolution of 1.3 Å, although information transfer had been demonstrated down to 0.78 Å8. Initial results after installing an aberration corrector on the 300 kV STEM indicate a resolution of 0.84 Å. The theoretically achievable probe size in the absence of instabilities is predicted to be 0.5 Å.