Published in

Hindawi, Scanning, 1(32), p. 35-41, 2010

DOI: 10.1002/sca.20162

Links

Tools

Export citation

Search in Google Scholar

Nanoscale positioning of inorganic nanoparticles using biological ferritin arrays fabricated by Dip-Pen Nanolithography

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this manuscript we demonstrate the spatially controlled immobilization of ferritin proteins by directly writing them on a wide range of substrates of technological interest. Optical and fluorescence microscopy, AFM and TOF-SIMS studies confirm the successful deposition of the protein on those surfaces. Control on nanostructure shape and size, by miniaturizing the dot-like features down to a 100 nm, demonstrates the particular capabilities of the DPN approach. Ultimately, this study gives the opportunity to design nanoparticle-based arrays regarding the growing interest in the use of nanoparticles as structural and functional elements for fabricating nanodevices. Herein, we demonstrate how the protein shell of ferritins can be removed by a simple heat-treatment process while maintaining the encapsulated inorganic nanoparticle intact on the same location of the nanoarray. As a result, this study establishes how direct-write DPN approach could give the opportunity to design not only protein-based nanoarrays but also nanoparticle-based nanoarrays with high-resolution and control.