Published in

American Association of Immunologists, The Journal of Immunology, 10(153), p. 4520-4529, 1994

DOI: 10.4049/jimmunol.153.10.4520

Links

Tools

Export citation

Search in Google Scholar

Essential residues in V(D)J recombination signals

Journal article published in 1994 by Y. Akamatsu, N. Tsurushita, F. Nagawa, M. Matsuoka ORCID, K. Okazaki, M. Imai, H. Sakano
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Recombination signal sequences for V(D)J joining consist of a conserved heptamer (CACAGTG) and a nonamer (ACAAAAACC) separated by a spacer of a constant length (12 bp or 23 bp). In the present study, we have analyzed various recombination signal mutations for their effects in V(D)J joining. Using a retroviral vector, we introduced mutant substrates stably into pre-B cells, and assayed recombination using the lacZ gene as a reporter. This method allowed us to study recombination in a single copy within the context of the host cell chromosome. Because this assay did not show any detectable background, it was quite useful in the analysis of low level recombinations. In the heptamer, mutations in the first three residues severely dropped the joining rates. Among them, the first residue adjacent to the recombination site was found to be most essential. Although mutations in the heptamer reduced the joining rate to various extents, they did not lower the site-specificity of recombination. With regard to the nonamer, the presence of three consecutive A residues was necessary for efficient recombination. Furthermore, the nucleotides flanking the A-rich core needed to be other than A residues, probably marking the border of the A-stretch. This may be important when the recombinase measures the distance between the heptamer and the nonamer to satisfy the 12/23-bp spacer rule.