Published in

IOP Publishing, Nanotechnology, 46(18), p. 465501, 2007

DOI: 10.1088/0957-4484/18/46/465501

Links

Tools

Export citation

Search in Google Scholar

Nanoporous polymeric transmission gratings for high-speed humidity sensing

Journal article published in 2007 by Jinjie Shi, Vincent K. S. Hsiao, Tony Jun Huang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanoporous polymeric transmission gratings are demonstrated to be an excellent platform for high-speed optical humidity sensing. The grating structures were fabricated with a modified holographic, polymer-dispersed liquid crystal (H-PDLC) system. The sensing mechanism was based on changes in the relative transmission associated with the adsorption and desorption of water vapour by nanopores. The spectral changes due to varying humidity levels were measured by a spectrometer and compared with the calculated results based on the coupled wave theory. When the relative humidity (RH) changed from 40% to 95%, the relative transmission at 475 nm increased from 6.3% to 46.6% and that at 702 nm increased from 4% to 64%; these results indicate the sensor's high sensitivity. In addition, the sensor demonstrated excellent reversibility and reproducibility over a large RH range (from 20% to 100% RH). Moreover, the response time of the sensor was measured to be less than 350 ms, making it suitable for many high-speed humidity-sensing applications.