Dissemin is shutting down on January 1st, 2025

Published in

The Company of Biologists, Biology Open, 12(4), p. 1762-1771, 2015

DOI: 10.1242/bio.014696

Links

Tools

Export citation

Search in Google Scholar

Introducing Pitt-Hopkins syndrome-associated mutations ofTCF4toDrosophila daughterless

Journal article published in 2015 by Laura Tamberg, Mari Sepp ORCID, Tõnis Timmusk, Mari Palgi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTPitt-Hopkins syndrome (PTHS) is caused by haploinsufficiency of Transcription factor 4 (TCF4), one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da), homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder.