Published in

Elsevier, Precambrian Research, (233), p. 59-72, 2013

DOI: 10.1016/j.precamres.2013.04.016

Links

Tools

Export citation

Search in Google Scholar

Microstructures in metasedimentary rocks from the Neoproterozoic Bonahaven Formation, Scotland: Microconcretions, impact spherules, or microfossils?

Journal article published in 2013 by Ross P. Anderson, Ian J. Fairchild ORCID, Nicholas J. Tosca, Andrew H. Knoll
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Microscopic spherules in relatively undeformed mudstones of the Neoproterozoic Bonahaven Formation, Islay, Scotland, are differentiated from their matrix by a sharp micron-scale, smoothly rounded boundary. These elongate spherules were earlier interpreted as hollow bodies filled penecontemporaneously by glauconite and subsequently metamorphosed to phengite, but their origin remains a matter of debate. Spherules observed in thin section are predominantly rounded (~74%) but can exhibit a flat edge or protrusion at one end. In 11% of a sample population, two or more spherules are conjoined. X-ray diffraction indicates that spherule-bearing mudstones consist mainly of muscovite, with variable amounts of kaolin-group minerals and minor iron-chlorites. A range of physical origins for the spherules – including microconcretions or metamorphic microstructures; deposition from the sky as micrometeorites, microtektites/microkrystites, or accretionary volcanic ash particles; and detrital grains – is considered but rejected on distributional, morphological, and mineralogical evidence. Biological origins are considered most likely, especially protistan tests similar to the vase-shaped microfossils found in somewhat older Neoproterozoic rocks. If correct, this provides the first report of eukaryotic life in the Dalradian succession that passes critical tests for biogenicity and new evidence for testate microfossils in post-Sturtian but pre-Marinoan aged rocks.