Published in

American Chemical Society, Journal of the American Chemical Society, 26(137), p. 8450-8459, 2015

DOI: 10.1021/jacs.5b02283

Links

Tools

Export citation

Search in Google Scholar

Nanopatterning of Surfaces with Monometallic and Heterobimetallic 1D Coordination Polymers: A Molecular Tectonics Approach at the Solid/Liquid Interface

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The self-assembly of multiple molecular components into complex supramolecular architectures is ubiquitous in nature and constitutes one of the most powerful strategies to fabricate multifunctional nanomaterials making use of the bottom-up approach. When spatial confinement in two-dimensions on a solid substrate is employed, this approach can be exploited to generate periodically ordered structures from suitably designed molecular tectons. In this manuscript we demonstrate that physisorbed directional periodic arrays of monometallic or hetero bimetallic coordination polymers can be generated on HOPG surface by combinations of suitably designed directional organic tecton or metallatecton based on a porphyrin or Ni(II) metallaporphyrin backbone bearing both a pyridyl and a terpyridyl units acting as coordinating sites for CoCl2. The periodic architectures were visualized at the solid/liquid interface with a sub-molecular resolution by scanning tunneling microscopy (STM) and corroborated by combined density functional and time-dependent density functional theory (DFT and TD-DFT) calculations. The capacity to nanopattern the surface for the first time with two distinct metallic centers exhibiting different electronic and optical properties is a key step towards the bottom-up construction of robust multicomponent, thus, multifunctional molecular nanostructures and nanodevices.