Published in

Springer (part of Springer Nature), New Generation Computing, 3(27), p. 239-257

DOI: 10.1007/s00354-008-0063-7

Links

Tools

Export citation

Search in Google Scholar

Michigan Particle Swarm Optimization for Prototype Reduction in Classification Problems

Journal article published in 2009 by Alejandro Cervantes ORCID, Inés M. Galván, Pedro Isasi
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents a new approach to Particle Swarm Optimization, called Michigan Approach PSO (MPSO), and its applica- tion to continuous classi cation problems as a Nearest Prototype (NP) classi er. In Nearest Prototype classi ers, a collection of prototypes has to be found that accurately represents the input patterns. The classi er then assigns classes based on the nearest prototype in this collection. The MPSO algorithm is used to process training data to nd those prototypes. In the MPSO algorithm each particle in a swarm represents a single pro- totype in the solution and it uses modi ed movement rules with particle competition and cooperation that ensure particle diversity. The proposed method is tested both with arti cial problems and with real benchmark problems and compared with several algorithms of the same family. Re- sults show that the particles are able to recognize clusters, nd decision boundaries and reach stable situations that also retain adaptation po- tential. The MPSO algorithm is able to improve the accuracy of 1-NN classi ers, obtains results comparable to the best among other classi ers, and improves the accuracy reported in literature for one of the problems.