Published in

Nature Research, Scientific Reports, 1(5), 2015

DOI: 10.1038/srep13570

Links

Tools

Export citation

Search in Google Scholar

Discovery of γ-Mangostin as an Amyloidogenesis Inhibitor

Journal article published in 2015 by Takeshi Yokoyama ORCID, Mitsuharu Ueda, Yukio Ando, Mineyuki Mizuguchi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTransthyretin (TTR) is a homotetrameric protein involved in human hereditary amyloidoses. The discovery and development of small molecules that inhibit the amyloid fibril formation of TTR is one of the therapeutic strategies for these diseases. Herein, we discovered that γ-mangostin (γ-M) is an effective inhibitor against the amyloid fibril formation of V30M amyloidogenic TTR. In-vitro binding assays revealed that γ-M was the most potent of the selected xanthone derivatives and it bound to the thyroxine (T4)-binding sites and stabilized the TTR tetramer. X-ray crystallographic analysis revealed the diagonal binding mode of γ-M and the two binding sites of chloride ions at the T4-binding site. One of the chloride ions was replaced with a water molecule in the α-mangostin complex, which is a methylated derivative of γ-M. The stronger inhibitory potency of γ-M could be explained by the additional hydrogen bonds with the chloride ion. The present study establishes γ-M as a novel inhibitor of TTR fibrillization.