Published in

Elsevier, Thin Solid Films, 9(519), p. 2821-2824

DOI: 10.1016/j.tsf.2010.11.078

Links

Tools

Export citation

Search in Google Scholar

Micelle-assisted bilayer formation of cetyltrimethylammonium bromide thin films studied with combinatorial spectroscopic ellipsometry and quartz crystal microbalance techniques

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report on a combinatorial approach to study the formation of ultra-thin organic films using in-situ spectroscopic ellipsometry and quartz crystal microbalance methods. In contrast to the quartz crystal microbalance, which is sensitive to the total mass attached to the surface, including coupled and entrapped solvent, spectroscopic ellipsometry only measures the amount of adsorbent on the surface. By using these two techniques in tandem, we define and determine the solvent fraction of cetyltrimethylammonium bromide thin films adsorbed onto a gold-coated quartz crystal. Cetyltrimethylammonium bromide thin films grown from aqueous solutions above the critical micelle concentration reveal critical phases in thickness and porosity evolution. We relate these effects to the mechanisms of formation and removal and the structure of cetyltrimethylammonium bromide films, which we determine to have systemic defects due to the presence of micelles.