Published in

Elsevier, International Journal of Refractory Metals and Hard Materials, (42), p. 36-41

DOI: 10.1016/j.ijrmhm.2013.10.007

Links

Tools

Export citation

Search in Google Scholar

Microstructure and mechanical properties of TiB2–SiC ceramic composites by Reactive Hot Pressing

Journal article published in 2014 by Guolong Zhao, Chuanzhen Huang, Hanlian Liu, Bin Zou, Hongtao Zhu, Jun Wang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

TiB2–SiC ceramic composites with different contents of Ni as additive were prepared by the Reactive Hot Pressing (RHP) process at 1700 °C under a pressure of 32 MPa for 30 min. For comparison, a monolithic TiB2 ceramic and TiB2–SiC ceramic composite were also fabricated under the identical temperature, pressure and holding time by the Hot Pressing (HP) process. The effects of the fabrication process and Ni on the microstructure and mechanical properties of the composites were investigated. About 8 vol.% of elongated TiB2 grains with an aspect ratio of 3–6 and a diameter of 0.5–1 μm were produced in the composite prepared by the RHP process. The improvement of the fracture toughness was attributed to the toughening and strengthening effects of SiC particles and the elongated TiB2 grains such as crack deflection. The TiB2–SiC–5 wt.% Ni ceramic composite had the optimum mechanical properties with a flexural strength of 858 ± 87 MPa, fracture toughness of 8.6 ± 0.54 MPa·m1/2 and hardness of 20.2 ± 0.94GPa. The good mechanical properties were ascribed to the relatively fine and homogeneous microstructure and the strengthening effect of Ni. Ni inhibited the anisotropic growth of TiB2.