Published in

Wiley, Journal of Orthopaedic Research, 11(25), p. 1408-1414, 2007

DOI: 10.1002/jor.20388

Links

Tools

Export citation

Search in Google Scholar

Mechanical properties of femoral cortical bone following cemented hip replacement

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Femoral bone remodeling following total hip replacement is a big concern and has never been examined mechanically. In this study, six goats underwent unilateral cemented hip hemiarthroplasty with polymethyl methacrylate (PMMA) bone cement. Nine months later animals were sacrificed, and the femoral cortical bone slices at different levels were analysed using microhardness testing and microcomputed tomography (micro-CT) scanning. Implanted femurs were compared to contralateral nonimplanted femurs. Extensive bone remodeling was demonstrated at both the proximal and middle levels, but not at the distal level. Compared with the nonimplanted side, significant decreases were found in the implanted femur in cortical bone area, bone mineral density, and cortical bone hardness at the proximal level, as well as in bone mineral density and bone hardness at the middle level. However, no significant difference was observed in either variable for the distal level. In addition, similar proximal-to-distal gradient changes were revealed both in cortical bone microhardness and bone mineral density. From the mechanical point of view, the results of the present study suggested that stress shielding is an important mechanical factor associated with bone adaptation following total hip replacement.