Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 41(109), p. 16618-16623, 2012

DOI: 10.1073/pnas.1117610109

Links

Tools

Export citation

Search in Google Scholar

TGF-β blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-β blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTβRII, a soluble TGF-β type II receptor) and pharmacologic (1D11, a TGF-β neutralizing antibody) approaches to block TGF-β signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-β blockade significantly decreased tumor growth and metastasis. TGF-β blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-β blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-β blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent, leading to better control of tumor growth.