Published in

American Chemical Society, Analytical Chemistry, 24(83), p. 9573-9578, 2011

DOI: 10.1021/ac202358t

Links

Tools

Export citation

Search in Google Scholar

Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching. The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.0-μm apart. The nanochannel that brackets the two pores is 20× wider (1 μm) to reduce the electrical resistance adjacent to the two pores and to ensure the current returns to its baseline value between resistive-pulse events. Average pulse amplitudes differ by <2% between the two pores and demonstrate that the fabrication technique is able to produce pores with nearly identical geometries. Because the two nanopores in series sense single particles at two discrete locations, particle properties, e.g., electrophoretic mobility, are determined from the pore-to-pore transit time.