Published in

Elsevier, Chemical Physics, (422), p. 156-164

DOI: 10.1016/j.chemphys.2013.03.006

Links

Tools

Export citation

Search in Google Scholar

Proton affinity of the histidine-tryptophan cluster motif from the influenza A virus from ab initio molecular dynamics

Journal article published in 2013 by Arindam Bankura, Michael L. Klein, Vincenzo Carnevale ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ab initio molecular dynamics calculations have been used to compare and contrast the deprotonation reaction of a histidine residue in aqueous solution with the situation arising in a histidine-tryptophan cluster. The latter is used as a model of the proton storage unit present in the pore of the M2 proton conducting ion channel. We compute potentials of mean force for the dissociation of a proton from the Nδ and Nε positions of the imidazole group to estimate the pKa’s. Anticipating our results, we will see that the estimated pKa for the first protonation event of the M2 channel is in good agreement with experimental estimates. Surprisingly, despite the fact that the histidine is partially desolvated in the M2 channel, the affinity for protons is similar to that of a histidine in aqueous solution. Importantly, the electrostatic environment provided by the indoles is responsible for the stabilization of the charged imidazolium.