Links

Tools

Export citation

Search in Google Scholar

Magnetic topologies due to two bipolar regions

Journal article published in 2002 by C. Beveridge, Er R. Priest ORCID, Ds S. Brown
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The Sun's atmosphere contains many diverse phenomena that are dominated by the coronal magnetic field. To understand these phenomena it is helpful to determine first the structure of the magnetic field, i.e., the magnetic topology. We study here the topological structure of the coronal magnetic field arising from the interaction of two bipolar regions, for which we find that four distinct, topologically stable states are possible. A bifurcation diagram is produced, showing how the magnetic configuration can change from one topology to another as the relative orientation and sizes of the bipolar regions are varied. The changes are produced either by a global separator bifurcation, a local double-separator bifurcation, a new, global separatrix quasi-bifurcation, or a new, global spine quasi-bifurcation.