Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Nuclear Materials, (458), p. 326-334

DOI: 10.1016/j.jnucmat.2014.12.113

Links

Tools

Export citation

Search in Google Scholar

Microstructural evolution of RPV steels under proton and ion irradiation studied by positron annihilation spectroscopy

Journal article published in 2015 by J. Jiang, Y. C. Wu, X. B. Liu, R. S. Wang, Y. Nagai, K. Inoue, Y. Shimizu ORCID, T. Toyama ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The microstructural evolution of reactor pressure vessel (RPV) steels induced by proton and heavy ion irradiation at low temperature (∼373 K) has been investigated using positron annihilation spectroscopy (PAS), atom probe tomography (APT), transmission electron microscopy (TEM) and nanoindentation. The PAS results indicated that both proton and heavy ion irradiation produce a large number of matrix defects, which contain small-size defects such as vacancies, vacancy-solute complexes, dislocation loops, and large-size vacancy clusters. In proton irradiated RPV steels, the size and number density of vacancy cluster defects increased rapidly with increasing dose due to the migration and agglomeration of vacancies. In contrast, for Fe ion irradiated steels, high density, larger size vacancy clusters can be easily induced at low dose, showing saturation in PAS response with increasing dose. No clear precipitates, solute-enriched clusters or other forms of solute segregation were observed by APT. Furthermore, dislocation loops were observed by TEM after 1.0 dpa, 240 keV proton irradiation, and an increase of the average nanoindentation hardness was found. It is suggested that ion irradiation produces many point defects and vacancy cluster defects, which induce the formation of dislocation loops and the increase of nanoindentation hardness.