Published in

Springer, Journal of Materials Research, 1(18), p. 37-44, 2003

DOI: 10.1557/jmr.2003.0006

Links

Tools

Export citation

Search in Google Scholar

Microstructural evolution of body-centered cubic structure related Ti-Zr-Ni phases in non-stoichiometric Zr-based Zr-Ti-Mn-V-Ni hydride electrode alloys

Journal article published in 2003 by Xueyan Song, Yun Chen, Cesar Sequeira ORCID, Yongquan Lei, Qidong Wang, Ze Zhang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Non-stoichiometric Zr-based alloys were prepared, and the corresponding electrochemical properties were characterized as hydride electrode alloys. The microstructure and chemical composition of non-stoichiometric Zr–Ti–Mn–V–Ni hydride electrode alloys were systematically investigated by x-ray Rietveld refinement, transmission electron microscopy (TEM), and energy dispersive spectroscopy under TEM observation. C14, C15 Laves phases and non-Laves phases were identified in Zr1−xTix(MnVNi)2.2 (x = 0, 0.2, 0.3, 0.4) alloys. Non-Laves phases in Zr1-xTix(MnVNi)2.2 (x = 0, 0.2, 0.3, 0.4) alloys are Ti–Zr–Ni phases related to the TiNi phase with pseudo-body-centered-cubic structure of the CsCl type. The evolution of crystallography and phase constitution for Ti–Zr–Ni non-Laves phases with different alloy composition was systematically studied. The influence of the Ti–Zr–Ni phases on the electrochemical properties of non-stoichiometric Zr1−xTix(MnVNi)2.2 alloys is briefly discussed.