Published in

Springer Nature [academic journals on nature.com], Neuropsychopharmacology, 4(23), p. S50-S59

DOI: 10.1016/s0893-133x(00)00144-5

Links

Tools

Export citation

Search in Google Scholar

Evidence for Adenosine/Dopamine Receptor Interactions: Indications for Heteromerization

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Evidence has been obtained for adenosine/dopamine interactions in the central nervous system. There exists an anatomical basis for the existence of functional interactions between adenosine A1R and dopamine D1R and between adenosine A2A and dopamine D2 receptors in the same neurons. Selective A1R agonists affect negatively the high affinity binding of D1 receptors. Activation of A2A receptors leads to a decrease in receptor affinity for dopamine agonists acting on D2 receptors, specially of the high-affinity state. These interactions have been reproduced in cell lines and found to be of functional significance. Adenosine/dopamine interactions at the behavioral level probably reflect those found at the level of dopamine receptor binding and transduction. All these findings suggest receptor subtype-specific interactions between adenosine and dopamine receptors that may be achieved by molecular interactions (e.g., receptor heterodimerization). At the molecular level adenosine receptors can serve as a model for homomeric and heteromeric protein–protein interactions. A1R forms homodimers in membranes and also form high-order molecular structures containing also heterotrimeric G-proteins and adenosine deaminase. The occurrence of clustering also clearly suggests that G-protein- coupled receptors form high-order molecular structures, in which multimers of the receptors and probably other interacting proteins form functional complexes. In view of the occurrence of homodimers of adenosine and of dopamine receptors it is speculated that heterodimers between these receptors belonging to two different families of G-protein-coupled receceptors can be formed. Evidence that A1/D1 can form heterodimers in cotransfected cells and in primary cultures of neurons has in fact been obtained. In the central nervous system direct and indirect receptor–receptor interactions via adaptor proteins participate in neurotransmission and neuromodulation and, for example, in the establishment of high neural functions such as learning and memory.