Published in

Elsevier, Journal of Structural Biology, 1(183), p. 57-65

DOI: 10.1016/j.jsb.2013.05.005

Links

Tools

Export citation

Search in Google Scholar

Microstructural evolution and nanoscale crystallography in scleractinian coral spherulites

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

One of the most important aspects in the research on reef-building corals is the process by which corals accrete biogenic calcium carbonate. This process leads to the formation of a mineral/organic composite and it is believed that the development of the nano- and microstructure of the mineral phase is highly sensitive to the growth conditions. Transmission electron microscopy (TEM) analysis of large-scale (10 x 30 μm) focused ion beam (FIB) prepared lamellae was performed on adult and juvenile scleractinian coral skeleton specimens. This allowed for the investigation of the nano and microstructure and the crystallographic orientation of the aragonite mineral. We found the following microstructural evolution in the adult Porites lobata specimens: randomly oriented nanocrystals with high porosity, partly aligned nanocrystals with high porosity and areas of dense acicular crystals of several micrometers extension, the latter two areas are aligned close to the [001] direction (Pmcn space group). To the best of our knowledge, for the first time the observed microstructure could be directly correlated with the dark/bright bands characteristic of the diurnal growth cycle. We hypothesize that this mineral structure sequence and alignment in the adult specimen is linked to the photosynthetic diurnal cycle of the zooxanthellea regulating the oxygen levels and organic molecule transport to the calcifying medium. These observations reveal a strong control of crystal morphology by the organism and the correlation of the accretion process. No indication for a self-assembly of nanocrystalline units, i.e. a mesocrystal structure, on the micrometer scale could be found.