Published in

American Chemical Society, Journal of Physical Chemistry C, 5(115), p. 1682-1694, 2011

DOI: 10.1021/jp109630n

Links

Tools

Export citation

Search in Google Scholar

Nanoengineered PtCo and PtNi Catalysts for Oxygen Reduction Reaction: An Assessment of the Structural and Electrocatalytic Properties

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The ability to nanoengineer catalysts in terms of size, composition, shape, and phase properties is essential in exploiting the catalytic properties. This paper reports the results of an investigation of the structural and electrocatalytic properties of PtM (M = Co and Ni) nanoparticles and their carbon-supported electrocatalysts for an oxygen reduction reaction (ORR). Examples are focused on PtCo and PtNi nanoparticles in the range of 2?9 nm and in the composition range of 50?75% Pt. A sharp contrast in size dependence of the activity was revealed between PtCo/C and PtNi/C catalysts, showing a clear trend of decrease in activity with increasing particle size for PtCo/C and a subtle increase in activity for PtNi/C. The size?activity correlation also depends on the bimetallic composition. The detailed analyses of the structures of the catalysts by XAS technique revealed important information for assessing the electrocatalytic properties in relation to the relative amount of oxygenated species and the re