Published in

Elsevier, Trends in Food Science and Technology, 1(39), p. 18-39, 2014

DOI: 10.1016/j.tifs.2014.06.007

Links

Tools

Export citation

Search in Google Scholar

Nanoencapsulation of Food Ingredients using Carbohydrate Based Delivery Systems

Journal article published in 2014 by Milad Fathi, Ángel Martín, David Julian McClements ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Natural and modified polysaccharides are promising vehicles for nano- and micro-encapsulation of active food ingredients. This article reviews the state of the art of carbohydrate-based delivery systems for utilization in the food, pharmaceutical and other industries. Initially, an overview of the different kinds of carbohydrates used to assemble delivery systems is given, including starch, cellulose, pectin, guar gum, chitosan, alginate, dextrin, cyclodextrins, new sources of native gums, and their combinations and chemically modified forms. Their molecular and physicochemical properties, functional performance, and advantages and disadvantages for encapsulation are given. Various approaches for fabrication of carbohydrate-based delivery systems are then discussed, including coacervation, spray drying, electrospinning, electrospray, supercritical fluid, emulsion-diffusion, reverse micelle, emulsion-droplet coalescence, emulsification/solvent evaporation, salting-out, ultrasonication and high pressure homogenization. The biological fate of carbohydrate nanocarriers during digestion, absorption, metabolism and excretion are discussed, and some notes about their bioavailability and potential toxicity are provided. Finally, the functional performances of different carbohydrate-based delivery systems are discussed, and future developments are highlighted.