Published in

The Company of Biologists, Journal of Cell Science, 5(124), p. 776-788, 2011

DOI: 10.1242/jcs.072447

Links

Tools

Export citation

Search in Google Scholar

Translocation dynamics of sorting nexin 27 in activated T cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Sorting nexin 27 (SNX27) belongs to the sorting nexin family of proteins, which participate in vesicular and protein trafficking. Similarly to all sorting nexin proteins, SNX27 has a functional PX domain that is important for endosome binding, but it is the only sorting nexin with a PDZ domain. We identified SNX27 as a partner of diacylglycerol kinase ζ (DGKζ), a negative regulator of T cell function that metabolises diacylglycerol to yield phosphatidic acid. SNX27 interacts with the DGKζ PDZ-binding motif in early/recycling endosomes in resting T cells; however, the dynamics and mechanisms underlying SNX27 subcellular localisation during T cell activation are unknown. We demonstrate that in T cells that encounter pulsed antigen-presenting cells, SNX27 in transit on early/recycling endosomes polarise to the immunological synapse. A fraction of SNX27 accumulates at the mature immunological synapse in a process that is dependent on vesicular trafficking, binding of the PX domain to phosphatidylinositol 3-phosphate and the presence of the PDZ region. Downmodulation of expression of either SNX27 or DGKζ results in enhanced basal and antigen-triggered ERK phosphorylation. These results identify SNX27 as a PDZ-containing component of the T cell immunological synapse, and demonstrate a role for this protein in the regulation of the Ras–ERK pathway, suggesting a functional relationship between SNX27 and DGKζ.