Published in

Wiley, European Journal of Immunology, 10(40), p. 2699-2709, 2010

DOI: 10.1002/eji.201040339

Links

Tools

Export citation

Search in Google Scholar

MHC class I molecules exploit the low G+C content of pathogen genomes for enhanced presentation

Journal article published in 2010 by Jorg J. A. Calis, Gabino F. Sanchez Perez ORCID, Can Keşmir
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Distinguishing self from nonself and pathogenic from nonpathogenic is a fundamental challenge to the immune system but whether adaptive immune systems use pathogen-specific signatures to achieve this is largely unknown. By investigating the presentation of large sets of viruses and bacteria on MHC class I molecules, we analyze whether MHC-I molecules have a preference for pathogen-derived peptides. The fraction of potential MHC-I binders in different organisms can vary up to eight-fold. We find that this variation can be largely explained by G+C content differences of the organisms, which are reflected in amino acid frequencies. A significant majority of HLA-A, but not HLA-B, molecules has a preference for peptides derived from organisms with a low G+C content. Interestingly, a low G+C content seems to be a universal signature for pathogenicity. Finally, we find the same preferences in chimpanzee and rhesus macaque MHC-I molecules. These results demonstrate that despite the fast evolution of MHC-I alleles and their extreme polymorphism and diversity in peptide-binding preferences, MHC-I molecules can acquire a preference to exploit pathogen-specific signatures.