Springer (part of Springer Nature), Analytical and Bioanalytical Chemistry, 2(406), p. 611-620
DOI: 10.1007/s00216-013-7484-y
Full text: Unavailable
A simple method for the simultaneous determination of glufosinate and itsmetabolites in plants based on liquid chromatography–ultraviolet (LC–UV) absorption detection after derivatization with fluorenylmethoxycarbonyl chloride (FMOC-Cl) of some analytes to facilitate separation is reported here. Nonavailable standard metabolites were identified by LC–TOF/mass spectrometry (MS), which also confirmed all target analytes. Ultrasound-assisted extraction was used for sample preparation (power of 70 Wand duty cycle of 0.7 s/s for 10 min) with subsequent evaporation of the extractant, reconstitution and filtration as the cleanup/concentration step prior to derivatization, and chromatographic separation and detection at 270 nm for underivatized analytes and 340 nm for those that were derivatized. The chromatographic analysis was completed in 40 min using a Luna® column (C18 phase). The analytical characteristics of the method were linear dynamic range of the calibration curves within 0.047–700 μg/mL with a regression coefficient (rc) of 0.999 for glufosinate, 0.077–700 μg/mL with a rc of 0.998 for N-acetyl-glufosinate, and 0.116–600 μg/mL with a rc of 0.998 for 3-(methylphosphinico)propanoic acid. The precision for the determination of glufosinate (studied at two levels, 0.1 and 5 μg/mL) was 2.7 and 6.0 % for repeatability and 4.7 and 7.2%for within-laboratory reproducibility, respectively. Identification and confirmatory analysis of the presence of glufosinate and metabolites in the extracts from treated plants was carried out by LC–TOF/MS in high-resolution mode for the precursor ion. The method was validated by analyzing wheat (Triticum aestivum) samples (resistant and susceptible biotypes) treated with 300 g of glufosinate/ha following conventional agronomical practices.