Published in

American Physical Society, Physical Review Letters, 14(102), 2009

DOI: 10.1103/physrevlett.102.142501

Links

Tools

Export citation

Search in Google Scholar

Evidence for a Change in the Nuclear Mass Surface with the Discovery of the Most Neutron-Rich Nuclei with17≤Z≤25

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The results of measurements of the production of neutron-rich nuclei by the fragmentation of a 76Ge beam are presented. The cross sections were measured for a large range of nuclei including 15 new isotopes that are the most neutron-rich nuclides of the elements chlorine to manganese (50Cl, 53Ar, ;{55,56}K, ;{57,58}Ca, ;{59,60,61}Sc, ;{62,63}Ti, ;{65,66}V, 68Cr, 70Mn). The enhanced cross sections of several new nuclei relative to a simple thermal evaporation framework, previously shown to describe similar production cross sections, indicates that nuclei in the region around 62Ti might be more stable than predicted by current mass models and could be an indication of a new island of inversion similar to that centered on 31Na.