Published in

Wiley Open Access, FASEB Journal, 4(21), p. 1088-1098, 2007

DOI: 10.1096/fj.06-7060com

Links

Tools

Export citation

Search in Google Scholar

Proprotein convertases promote processing of VEGF-D, a critical step for binding the angiogenic receptor VEGFR-2

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Vascular endothelial growth factor (VEGF)-D is a secreted glycoprotein that induces angiogenesis and lymphangiogenesis. It consists of a central domain, containing binding sites for VEGF receptor-2 (VEGFR-2) and VEGFR-3, and N- and C-terminal propeptides. It is secreted from the cell as homodimers of the full-length form that can be proteolytically processed to remove the propeptides. It was recently shown, using adenoviral gene delivery, that fully processed VEGF-D induces angiogenesis in vivo, whereas full-length VEGF-D does not. To better understand these observations, we monitored the effect of VEGF-D processing on receptor binding using a full-length VEGF-D mutant that cannot be processed. This mutant binds VEGFR-2, the receptor signaling for angiogenesis, with approximately 17,000-fold lower affinity than mature VEGF-D, indicating the importance of processing for interaction with this receptor. Further, we show that members of the proprotein convertase (PC) family of proteases promote VEGF-D processing, which facilitates the VEGF-D/VEGFR-2 interaction. The PCs furin and PC5 promote cleavage of both propeptides, whereas PC7 promotes cleavage of the C-terminal propeptide only. The finding that PCs promote activation of VEGF-D and other proteins with roles in cancer such as matrix metalloproteinases, emphasizes the importance of these enzymes as potential regulators of tumor progression and metastasis.