Published in

Elsevier, Applied Surface Science, (341), p. 1-12, 2015

DOI: 10.1016/j.apsusc.2015.02.163

Links

Tools

Export citation

Search in Google Scholar

Understanding growth mechanisms and tribocorrosion behaviour of porous TiO2 anodic films containing calcium, phosphorous and magnesium

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The growth of the dental implant market increases the concern regarding the quality, efficiency, and lifetime of dental implants. Titanium and its alloys are dominant materials in this field thanks to their high biocompatibility and corrosion resistance, but they possess a very low wear resistance. Besides problems related to osteointegration and bacterial infections, tribocorrosion phenomena being the simultaneous action between corrosion and wear, are likely to occur during the lifetime of the implant. Therefore, tribocorrosion resistant surfaces are needed to guarantee the preservation of dental implants.This work focused on the incorporation of magnesium, together with calcium and phosphorous, in the structure of titanium oxide films produced by micro- arc oxidation (MAO). The characterization ofmorphology, chemical composition, and crystalline structure of the surfaces provided important insights leading to (1) a better understanding of the oxide film growth mechanisms during the MAO treatment; and (2) a better awareness on the degradation process during tribocorrosion tests. The addition of magnesium was shown to support the formation of rutile which improves the tribocorrosion properties ofthe surfaces. ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)