Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of the American Chemical Society, 26(137), p. 8644-8653, 2015

DOI: 10.1021/jacs.5b04917

Links

Tools

Export citation

Search in Google Scholar

Dioxygen Activation and Catalytic Reduction to Hydrogen Peroxide by a Thiolate-Bridged Dimanganese(II) Complex with a Pendant Thiol.

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Herein, we describe an uncommon example of a manganese-thiolate complex, which is capable of activating dioxygen and catalyzing its two-electron reduction to generate H2O2. The structurally characterized dimercapto-bridged Mn(II) dimer [Mn(II)2(LS)(LSH)]ClO4 (Mn(II)2SH) is formed by reaction of the LS ligand (2,2'-(2,2'-bipyridine-6,6'-diyl)bis(1,1-diphenylethanethiolate)) with Mn(II). The unusual presence of a pendant thiol group bound to one Mn(II) ion in Mn(II)2SH is evidenced both in the solid state and in solution. The Mn(II)2SH complex reacts with dioxygen in CH3CN, leading to the formation of a rare mono-μ-hydroxo dinuclear Mn(III) complex, [(Mn(III)2(LS)2(OH)]ClO4 (Mn(III)2OH), which has also been structurally characterized. When Mn(II)2SH reacts with O2 in the presence of a proton source, 2,6-lutidinium tetrafluoroborate (up to 50 equiv), the formation of a new Mn species is observed, assigned to a bis-μ-thiolato dinuclear Mn(III) complex with two terminal thiolate groups (Mn(III)2), with the concomitant production of H2O2 up to ∼40% vs Mn(II)2SH. The addition of a catalytic amount of Mn(II)2SH to an air-saturated solution of MenFc (n = 8 or 10) and 2,6-lutidinium tetrafluoroborate results in the quantitative and efficient oxidation of MenFc by O2 to afford the respective ferrocenium derivatives (MenFc(+), with n = 8 or 10). Hydrogen peroxide is mainly produced during the catalytic reduction of dioxygen with 80-84% selectivity, making the Mn(II)2SH complex a rare Mn-based active catalyst for two-electron O2 reduction.