Published in

American Phytopathological Society, Molecular Plant-Microbe Interactions, 9(22), p. 1043-1055, 2009

DOI: 10.1094/mpmi-22-9-1043

Links

Tools

Export citation

Search in Google Scholar

Partial Resistance ofMedicago truncatulatoAphanomyces euteichesIs Associated with Protection of the Root Stele and Is Controlled by a Major QTL Rich in Proteasome-Related Genes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A pathosystem between Aphanomyces euteiches, the causal agent of pea root rot disease, and the model legume Medicago truncatula was developed to gain insights into mechanisms involved in resistance to this oomycete. The F83005.5 French accession and the A17-Jemalong reference line, susceptible and partially resistant, respectively, to A. euteiches, were selected for further cytological and genetic analyses. Microscopy analyses of thin root sections revealed that a major difference between the two inoculated lines occurred in the root stele, which remained pathogen free in A17. Striking features were observed in A17 roots only, including i) frequent pericycle cell divisions, ii) lignin deposition around the pericycle, and iii) accumulation of soluble phenolic compounds. Genetic analysis of resistance was performed on an F7 population of 139 recombinant inbred lines and identified a major quantitative trait locus (QTL) near the top of chromosome 3. A second study, with near-isogenic line responses to A. euteiches confirmed the role of this QTL in expression of resistance. Fine-mapping allowed the identification of a 135-kb sequenced genomic DNA region rich in proteasome-related genes. Most of these genes were shown to be induced only in inoculated A17. Novel mechanisms possibly involved in the observed partial resistance are proposed.