Dissemin is shutting down on January 1st, 2025

Published in

Taylor & Francis, Expert Opinion on Biological Therapy, 3(15), p. 353-379

DOI: 10.1517/14712598.2015.996544

Links

Tools

Export citation

Search in Google Scholar

Minicircle DNA vectors for gene therapy: advances and applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introduction:Nucleic-acid-based biopharmaceuticals enclose a remarkable potential for treating debilitating or life-threatening diseases that currently remain incurable. This promising area of research envisages the creation of state-of-the-art DNA vaccines, pluripotent cells or gene-based therapies, which can be used to overcome current issues. To achieve this goal, DNA minicircles are emerging as ideal nonviral vectors due to their safety and persistent transgene expression in either quiescent or actively dividing cells.Areas covered:This review focuses on the characteristics of minicircle DNA (mcDNA) technology and the current advances in their production. The possible modifications to further improve minicircle efficacy are also emphasized and discussed in light of recent advances. As a final point, the main therapeutic applications of mcDNA are summarized, with a special focus on pluripotent stem cells production and cancer therapy.Expert opinion:Achieving in-target and persistent transgene expression is a challenging issue that is of critical importance for a successful therapeutic outcome. The use of miniaturized mcDNA cassettes with additional modifications that increase and prolong expression may contribute to an improved generation of biopharmaceuticals. The unique features of mcDNA render it an attractive alternative to overcome current technical issues and to bridge the significant gap that exists between basic research and clinical applications.